8. 考查求参数范围

例 8.
$$(2017 年高考天津卷理8)$$
已知函数 $f(x) = \begin{cases} x^2-x+3, & x \leq 1 \\ x+\frac{2}{x}, & x > 1 \end{cases}$

设 $a \in \mathbb{R}$, 若关于 x 的不等式 $f(x) \ge |\frac{x}{2} + a|$ 在 \mathbb{R} 上恒成立,则 a的取值范围是(

A.
$$\left[-\frac{47}{16}, 2\right]$$
 B. $\left[-\frac{47}{16}, \frac{39}{16}\right]$

C.
$$[-2\sqrt{3}, 2]$$
 D. $[-2\sqrt{3}, \frac{39}{16}]$

解析: $f(x) \ge |\frac{x}{2} + a|$ 等价于 $-f(x) \le \frac{x}{2} + a \le f(x)$.

当 $x \le 1$ 时,就是 $-x^2+x-3 \le \frac{x}{2}+a \le x^2-x+3$,即 $-x^2+\frac{1}{2}x-3 \le x^2-x+3$ $a \le x^2 - \frac{3}{2}x + 3 - (x - \frac{1}{4})^2 - \frac{47}{16} \le a \le (x - \frac{3}{4})^2 + \frac{39}{16}$, $\text{fill} - \frac{47}{16} \le a \le 6$ $\frac{39}{16}$.

当 x>1 时,就是 $-x-\frac{2}{x} \le \frac{x}{2} + a \le x + \frac{2}{x}$,即 $-\frac{3}{2}x-\frac{2}{x} \le a \le x$ $\frac{1}{2}x + \frac{2}{x}$.

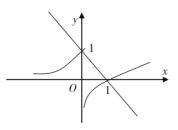
而 $-\frac{3}{2}x-\frac{2}{x} \le -2\sqrt{3}$, 当且仅当 $x=\frac{2}{\sqrt{2}}$ 时取等号. $\frac{1}{2}x+$ $\frac{2}{x} \ge 2$, 当且仅当 x=2时取等号. 所以 $-2\sqrt{3} \le a \le 2$. 综上可 知 $-\frac{47}{16}$ ≤a ≤2, 选答案 A.

点评:本题主要考查分段函数的意义、二次函数与双勾 函数的最值、恒成立不等式、参变分离思想等. 要注意分段讨论 后得到的 a 的范围应取交集. 能否将恒成立不等式 $f(x) \ge |\frac{x}{2} + a|$ 等价变形是解题的关键.一般地、 $|f(x)| \leq g(x) \Leftrightarrow -g(x) \leq f(x) \leq$ g(x); $|f(x)| \ge g(x) \Leftrightarrow f(x) \le -g(x) \stackrel{\triangleleft}{\Longrightarrow} |f(x)| \ge -g(x)$.

训练 8: (2018 年高考课标 I 卷理 9) 已知函数 f(x)= 值范围是 (

A.
$$[-1, 0)$$
 B. $[0, +\infty)$

解析: "g(x)=f(x)+x+a存在两个零点"就是"曲线 y=f(x)与直线 y=-x-a 有两个 交点". 函数 f(x) 的图像如 右. 要使得动直线 $\gamma=-x-a$ 与f(x)的图像有两个交点, 必须且只须 $-a \le 1$,即 $a \le -1$. 故选 C.



D. $[1, +\infty)$

C. $[-1, +\infty)$

9. 考查面积范围问题

例 9.设直线 1, 1,分别

是函数 $f(x) = \begin{cases} -\ln x, & 0 < x < 1 \\ \ln x, & x > 1 \end{cases}$ 图像上点 P_1 , P_2 处的切线, $l_1 = l_2$ 垂直相交于点 P, 且 l_1 , l_2 分别与 γ 轴相交于点A, B, 则 $\triangle PAB$ 的面积的取值范围是 ()

A.
$$(0, 1)$$
 B. $(0, 2)$ C. $(0, +\infty)$ D. $(1, +\infty)$

解析:设 $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, 由题意, 不妨设 $0 < x_1 < 1 < x_2$.

因为
$$f'(x) = \begin{cases} -\frac{1}{x}, \ 0 < x < 1 \\ f(x) = \frac{1}{x}, \ x > 1 \end{cases}$$
 所以 l_1 的斜率 $k_1 = -\frac{1}{x_1}, \ l_2$ 的斜率

又 l_1 与 l_2 垂直,所以 $k_1 \cdot k_2 = -1$,即 $-\frac{1}{x_1} \cdot \frac{1}{x_2} = -1$, $x_1 x_2 = 1$. 写出切线 l_1 与 l_2 的方程分别为, $l_1: y=-\frac{1}{x}(x-x_1)-\ln x_1\cdots$

$$l_2$$
: $y = \frac{1}{x_2}(x - x_2) - \ln x_2 \cdot \dots \cdot (2)$

联立①②解得交点 P 的横坐标 $x = \frac{2 - \ln(x_1 x_2)}{x_1 + x_2} = \frac{2}{x_1 + x_2}$.

由①得点 A 的坐标为 $(0, 1-\ln x_1)$, 由②得点 B 的坐标为 $(0, -1 + \ln x_2).$

于是 $|AB|=2-\ln x_1-\ln x_2=2$.

故 $S_{\Delta PMB} = \frac{1}{2} \cdot |AB| \cdot \frac{2}{x_1 + x_2} = \frac{2}{x_1 + x_2} \le \frac{2}{2\sqrt{x_1 \cdot x_2}} = 1$,当且仅当

 $x_1=x_2=1$ 时等号成立、与 $0<x_1<1<x_2$ 矛盾、所以 $S_{ABLB}<1$. 正确答 案是 A.

点评: 本题主要考查导数的几何意义、曲线的切线方程、 解方程组、基本不等式,以及分析、推理、运算能力和数形 结合思想, 具有结构新颖、运算量大、交汇性强的特点、能 有效考查学生的思维水平和综合能力, 有较大的难度.

训练 9. (2018 年海口市模考卷文 10) 设直线 l₁, l₂分别 是函数 $f(x) = \begin{cases} e^{-x} - 1, & -2 < x < 0 \\ x^2 & 0 < x < 2 \end{cases}$ 图像上点 $P_1(-1, m)$ 和 $P_2(1, n)$ 处 的切线, l_1 与 l_2 相交于点 P, 且 l_1 , l_2 分别与 x 轴相交于点 A, B,则 $\triangle PAB$ 的面积是

解析: 因为点 $P_1(-1, m)$ 和点 $P_2(1, n)$ 在函数 f(x)的图像 上, 所以 m=e-1, n=1. 在 $P_1(-1, e-1)$ 处的切线 l_1 的方程是 y-1e+1=-e(x+1), 即 y=-ex-1. 在 $P_2(1, 1)$ 处的切线 l_2 的方程是 y-1=2(x-1), 即 y=2x-1. l_1 与 l_2 相交于点 P为(0,-1), $A(-\frac{1}{a},-1)$, $B(\frac{1}{2}, 0).$

于是 $\triangle PAB$ 的面积是 $\frac{1}{2} \times (\frac{1}{2} + \frac{1}{2}) \times 1 = \frac{e+2}{4e}$.

10.考查实际问题

例 10. (2018年高考上海卷 19) 某群体的人均通勤时间, 是指单日内该群体中成员从居住地到工作地的平均用时.某地 上班族 S 中的成员仅以自驾或公交方式通勤. 分析显示: 当 S中 x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为